On the Zero-Energy-Limit Solution for the Modified Gross–Pitaevskii Equation

Kwang-Hua W. Chu

Received: 10 February 2007 / Accepted: 18 May 2007 / Published online: 6 June 2007 © Springer Science+Business Media, LLC 2007

Abstract The modified Gross–Pitaevskii equation was derived and solved to obtain the 1D solution in the zero-energy limit. This stationary solution could account for the dominated contributions due to the kinetic effect as well as the chemical potential in inhomogeneous Bose gases.

Keywords Zero-point energy · Quantum fluctuations

1 Introduction

Studies of collision phenomena in rather cold gases, e.g., dilute Bose gases, have recently attracted many researchers' attention [10]. One relevant research interest is about the solution of the appropriate and modified Gross–Pitaevskii equations for different dimensions [4, 10]. New possibilities for observation of macroscopic quantum phenomena arises because of the recent realization of Bose–Einstein condensation in atomic gases [10]. There are two important features of the system-weak interaction and significant spatial inhomogeneity. Because of this inhomogeneity a non-trivial *zeroth-order* theory exists, compared to the *first-order* Bogoliubov theory. This theory is based on the mean-field Gross–Pitaevskii equation for the condensate ψ -function. The equation is classical in its essence but contains the (h/2p) constant explicitly. Phenomena such as collective modes, interference, tunneling, Josephsonlike current and quantized vortex lines can be described using this equation. The study of deviations from the zeroth-order theory arising from zero-point and thermal fluctuations is also of great interest [7, 9, 11]. Thermal fluctuations are described by elementary excitations which define the thermodynamic behavior of the system and result in Landau-type damping of collective modes.

As a preliminary attempt, following the mean-field approximate formulation in [10], in this short paper, we plan to investigate the 1D solution for the modified Gross–Pitaevskii

K.-H.W. Chu (🖂)

College of Physics and Information Engineering, Hebei Normal University, Shijiazhuang 050016, China e-mail: khwchu@126.com equation in the zero-energy limit. This presentation will give more clues to the studies of the quantum non-equilibrium thermodynamics in inhomogeneous (dilute) Bose gases and the possible appearance of the kinetic mechanism before and/or after Bose–Einstein condensation which is directly linked to the particles (number) density and their energy states or chemical potentials.

2 Formulations

The generalization of the Bogoliubov prescription [2] for the ψ -operator to the case of a spatially nonuniform system is

$$\hat{\psi}(\mathbf{r},t) \approx \psi_0(\mathbf{r},t) + \hat{\phi}(\mathbf{r},t)$$
 (1)

where ψ_0 is the condensate wave function. This is an expression of the second quantization $(\psi$ -operator) for atoms as $n_0 = N_0/V = |\psi_0|^2$ and $\phi \ll \sqrt{n_0}$, N_0 is the number of atoms in the condensate. To neglect $\hat{\phi}$ means neglecting all correlations and this is a poor approximation when distances between particles are of the order of the effective radius r_e of the atom-atom interaction. To overcome this problem the assumption that the atomic gas is dilute: $nr_e^3 \ll 1$ should be made [10] (n = N/V, N) is the number of atoms confined in V). We can use the procedure of the quantum virial expansion to calculate the energy of the system. We have the form

$$E = E_0 + \frac{g}{2} \int n^2(\mathbf{r}) d\mathbf{r},$$
(2)

for the energy of slow particles, where E_0 is the energy of the gas without interaction, $n(\mathbf{r})$ of the density of the gas, $g = 4\pi a\hbar^2/m$, *a* is the s-wave scattering length and *m* is the particle's mass [10]. After taking into account the correlations (in above equation so that we can neglect $\hat{\phi}$) and considering *E* as an *effective Hamiltonian* we then have the celebrated Gross–Pitaevskii equation

$$i\hbar\frac{\partial}{\partial t}\psi_0(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r}) + g|\psi_0(\mathbf{r},t)|^2\right]\psi_0(\mathbf{r},t)$$
(3)

which describe the dynamics of a non-uniform nonideal Bose gas at T = 0. Here, $V_{\text{ext}}(\mathbf{r})$ is the confining potential. If the gas is in its ground state, the time dependence of ψ_0 is given by $\psi_0 \sim \exp(-i\mu t/\hbar)$, where μ is the chemical potential of the gas [10]. We thus obtain the form

$$\left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}}(\mathbf{r}) + g |\psi_0(\mathbf{r},t)|^2 - \mu\right] \psi_0(\mathbf{r},t) = 0$$
(4)

which could be stationary once t is fixed or selected. We noticed that an equation of above form has been considered before in connection with the theory of superfluidity of liquid helium close to the λ -point [6].

To investigate our interest here, we shall consider the 1D solution of (4) for the case of zero-energy limit. Firstly we consider a 3D Bose gas confined tightly in one dimension and weakly in the remaining two dimensions on a length scale $l_t (= \sqrt{\hbar/2m\omega})$ for a harmonic trap of angular frequency of ω). A collision between two condensate particles will typically occur over the characteristic length scale l_{col} once l_t is much larger than l_{col} (thus we can use a local density approximation).

We now model the pair wavefunction of two atoms in the medium by that a single particle with the reduced mass moving in a potential which consists of a circularly symmetric box of radius R and a hard sphere of radius R_a located in the centre of the box. Following the reasoning in the derivation of (1), we introduce a similar bias or ghost-effect for $\hat{\phi}: \Psi$ which can be relevant to certain critical or kinetic (non-equilibrium) effect (or configurational dissipation, quantum fluctuations included) [7, 8, 11, 12] so that $\mu \Psi = \varepsilon$ in the zero-energy, zero-momentum limit. It is presumed that ε still reaches zero in the homogeneous limit. The problem for a 2D $\psi(r, \theta)$ becomes, after referencing to the bias Ψ ,

$$\left[\frac{\partial^2}{\partial r^2} + \frac{\partial}{r\partial r} + \frac{\partial^2}{\partial \theta^2}\right]\psi = -\varepsilon$$
(5)

and, in fact, for a circularly symmetric $\psi(r)$,

$$\left[\frac{d^2}{dr^2} + \frac{d}{rdr}\right]\psi = -\varepsilon \tag{6}$$

with the boundary conditions: the wave function vanishes on the inner radius ($\psi = 0$ as $r = R_a$), and reaches an asymptotic value at the edge of the box ($\psi \rightarrow \Pi$ as r = R).

We can obtain the solution

$$\psi(r) = \frac{\varepsilon}{4} \left[R^2 - r^2 + (R^2 - R_a^2) \frac{\ln(r/R)}{\ln(R/R_a)} \right] + \Pi \frac{\ln(r/R_a)}{\ln(R/R_a)},\tag{7}$$

where $R_a \le r \le R$. The extra energy caused by the curvature of this wave function resulting from the scattering potential is

$$\Delta E = \frac{\hbar^2}{2m} \int_0^{2\pi} \int_{R_a}^R |\nabla \psi(r)|^2 r dr d\theta$$

= $\pi \frac{\hbar^2}{m} \left\{ \varepsilon \left[\frac{R^3 - R_a^3}{12} + \varepsilon \frac{R^2 - R_a^2}{\ln(R/R_a)} \left(\frac{1}{16} - \frac{R - R_a}{4} \right) \right] + \frac{\Pi}{\ln(R/R_a)} \left[\Pi + \varepsilon (R - R_a) \left(\frac{R - R_a}{2} - 1 \right) \right] \right\}.$ (8)

3 Results and Discussions

Note that, this (extra) energy depends upon the size of the box *R*, which is indeed the length scale relevant for the scattering of two particles in two dimensions [10]. The scattering of two particles in a many-body system should obviously not depend on the size of the system as a whole when *R* becomes large, and so we must interpret *R* as the physical relevant length scale l_{col} . The appropriate length scale over which a many-body wavefunction changes is the healing length l_h , given in homogeneous Bose condensed systems by $l_h = \hbar/\sqrt{2mg_{2D}n_0} = \hbar/\sqrt{2m\mu}$ [10], and so it is this which must be used in (8). We recall that $|\Pi|^2$ corresponds to the condensate density n_0 and the homogeneous limit for a pair interaction strength can still be recovered from above equation.

From (7), We can obtain and observe the relationship for $\psi(r)$ w.r.t. r (in terms of units of l_t) for different ε (say, 0.0005, 0.001, 0.005, 0.01) under the same Π (say, 0.01). The resulting presentation shows the significant effect of the kinetic part (say, Π) due to ε .

The effect of boundary conditions, like Π is minor. From the definition of $\varepsilon = \mu \Psi$, we can understand that the contribution of the chemical potential for ψ of the inhomogeneous gases is indeed dominated, too. We shall investigate more complicated problems [1, 3, 5] in the future.

References

- 1. Adhikari, S.K., Muruganandam, P.: J. Phys. B At. Mol. Opt. Phys. 35, 2831 (2002)
- 2. Bogoliubov, N.N.: J. Phys. USSR 11, 23 (1947)
- 3. Chu, K.-H.: Post-Dr. Report. Peking University, Beijing (2001) (in English)
- 4. Chu, K.-H.W.: Preprint (2002)
- 5. Chu, A.K.-H.: Int. J. Mod. Phys. B 21, 1 (2007)
- 6. Ginzburg, V.L., Pitaevskii, L.P.: Sov. Phys. JETP 7, 858 (1958)
- 7. Huang, K.S.: Phys. Rev. Lett. 83, 3770 (1999)
- 8. Kagan, Yu.M., Svistunov, Shlyapnikov, G.V.: Sov. Phys. JETP 74, 279 (1992)
- 9. Penrose, O., Onsager, L.: Phys. Rev. 104, 576 (1956)
- 10. Pitaevskii, L.P.: Int. J. Mod. Phys. B 13, 427 (1999)
- 11. Salasnich, L.: Int. J. Mod. Phys. B 15, 1253 (2001)
- 12. Snoke, D.W., Wolfe, J.P.: Phys. Rev. B 39, 4030 (1989)